别墅中,徐川已经有超过一周的时间没有出门了。
他对ns方程的推进在一开始还算顺利,偏微分方程本就是他上辈子的研究领域之一,再加上这辈子将数学作为主修的领域,在这一块,他已经成功超越了上辈子走出去了更远的距离。
但这并不能让他在ns方程上一帆风顺的走下去,在两天前,他陷入了一个瓶颈中,目前依旧还在寻找办法解决这个难题。
书房中,徐川皱着眉头盯着稿纸上的算式。
“u``=-(1/v)(1-cosa)u。”
这是一个很简单的公式,是以函数为系数的谐波方程,是从陈至达的变形张量s+r分解理论对于零压力梯度的壁面流动,得到速度剖面u(y)理论方程中形变而来的。
由这个方程可得,随着壁面距离的增大,湍流的尺度是从超高波数的微小尺度演化为趋于零波数的超大尺度。
在一般情况下,它几乎可以代替欧拉方程适用于所有的湍流,得到普遍有效的方程组。
此外,对于这个方程,已经证实的是,普朗特的对数律速度就是方程的理论解。
因此,可以认为:对于理想的壁面流动,理论解与实验解是吻合的。
简单的来说,就是在理想情况下,通过数学公式计算出来的湍流运行状态与实际运行是一模一样的。
能做到这个,就完全可以用来建立数学模型,实现对湍流的预判和控制。
但是,它有一个致命的问题!
那就是湍流区域是cosa从不能近似为1演化到接近于0的区域的,且普遍有效的解析解是难于得到的。
这对于形状怪异的可控核聚变反应堆腔室来说,是最为致命的点。
徐川想找到一个可以补足或者代替的方法,但至今未能做到。
更关键的是,数学上,严格的加速度公式是用李导数来证明的。
因此,用s+r导出的微元体加速度与李导数虽然在本质上一致,但是在力学(物理)解释上区别很大。
而目前科学界普遍接受的是基于李导数的欧拉方程,或是ns方程。
因此,对于这里给出的壁面流方程以及湍流的普遍方程,在理论界几乎没有支持性文献。
也就是说,徐川想要查阅借鉴一下以前的文献论文都做不到。