然而,研发过程中又遇到了新的问题。在一次系统测试中,他们发现人工智能系统在应对某些复杂的网络攻击时表现不够理想。团队成员们再次陷入了困境。
秦天召集团队成员们进行了一次深入的讨论。他说:“面对复杂的网络攻击,我们需要进一步优化我们的算法和模型,提高系统的应对能力。”
一位年轻的研究员提出:“我们可以尝试引入一些新的技术,比如深度学习中的对抗性训练,来增强系统的鲁棒性。”
另一位技术专家小陈补充道:“是的,对抗性训练确实是一个值得尝试的方向。不过,我们还需要考虑如何平衡模型的准确性和鲁棒性,避免因为引入对抗性训练而导致模型在普通情况下的性能下降。”
秦天点了点头,表示赞同:“小陈的担忧很有道理。我们确实需要在保证模型准确性的同时,增强其对抗复杂网络攻击的能力。这样,我们的系统才能在各种情况下都表现出色。”
小李则提出了一个具体的实施建议:“我们可以先对一部分数据进行对抗性训练,观察模型的表现。如果效果理想,我们再逐步扩大训练范围,直到找到最佳的平衡点。”
秦天觉得这个建议很实际,于是决定采纳。他吩咐团队成员们按照小李的建议进行尝试,并密切关注模型的训练进展。
在接下来的日子里,团队成员们分工合作,一部分人负责数据的对抗性标注和处理,另一部分人则负责调整和优化模型的训练参数。他们经过多次的试验和调整,逐渐找到了合适的对抗性训练强度和方法。
经过一段时间的努力,他们成功地提高了人工智能系统应对复杂网络攻击的能力。在后续的测试中,系统表现出了出色的鲁棒性和准确性,让团队成员们倍感欣慰。
然而,就在他们以为一切都在顺利进行时,新的问题又接踵而至。在一次系统集成测试中,他们发现人工智能系统与现有的网络安全防御体系存在兼容性问题。
秦天再次召集团队成员们进行讨论。他说:“我们的系统与现有的网络安全防御体系不兼容,这将会影响到我们的实际应用。我们需要尽快解决这个问题。”
团队成员们开始讨论可能的解决方案。小李提出:“我们可以对系统进行调整和优化,使其更好地适应现有的防御体系。”