当前位置:笔趣阁>都市小说>穹顶天魂的新书> 第141章 数字的魅力
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第141章 数字的魅力(2 / 2)

5 ÷ 6 = 0.

7 ÷ 6 = 1.

除以九:

1 ÷ 9 = 0.

4 ÷ 9 = 0.

2 ÷ 9 = 0.

8 ÷ 9 = 0.

5 ÷ 9 = 0.

7 ÷ 9 = 0.

1到9除以九:

1 ÷ 9 = 0.

2 ÷ 9 = 0.

3 ÷ 9 = 0.

4 ÷ 9 = 0.

5 ÷ 9 = 0.

6 ÷ 9 = 0.

7 ÷ 9 = 0.

8 ÷ 9 = 0.

9 ÷ 9 = 1.000000000000

3 6 9与1 4 2 8 5 7之间有啥关系吗?

在九宫格里3 6 9永远不相遇,成天地人三极换位如钟表顺时针转动,而九宫格里也是顺时针退行,它们始终成三角形排列,而1 4 2 8 5 7这个蝴蝶结在高维空间的投影或者说是扭曲变形。

这些也可以认为是一维点状空间的投影。

下面再来玩玩二维空间的东西:

病态的皮亚若曲线,也被称为佩亚诺曲线(Peano curve),是由意大利数学家朱塞佩·皮亚诺在1890年构造的一种空间填充曲线。它是第一条能够在二维平面上连续地遍历每一个点的曲线,这意味着如果你沿着这条曲线走,理论上可以覆盖整个平面,而不会遗漏任何地方。

佩亚诺曲线的构造基于一个递归的过程。开始时,我们有一个单位正方形,然后我们将这个正方形划分为9个小正方形,每个小正方形的边长是原来的三分之一。接着,我们在每个小正方形中重复这个过程,不断地将正方形分成更小的正方形。通过这种方式,我们得到了一个无限细分的网格。

佩亚诺曲线的关键在于如何在这个网格中绘制一条路径,使得这条路径能够遍历所有的小正方形。具体来说,我们从左上角的小正方形开始,按照一定的规则绘制路径,然后进入下一个小正方形,继续绘制,如此反复。每次进入新的小正方形时,我们都会改变方向,以确保路径能够覆盖整个网格。

经过足够多的迭代后,我们得到的曲线就会变得非常复杂,以至于无法用简单的几何形状来描述它。但是,这条曲线仍然是连续的,也就是说,你可以沿着这条曲线走,而不会遇到任何断点或跳跃。

佩亚诺曲线的重要性在于它展示了连续性和连通性之间的关系。在数学中,连续性通常被认为是一种非常强的性质,而连通性则相对较弱。佩亚诺曲线表明,即使是在看似简单的条件下,连续性也可以导致出人意料的结果,即一条曲线可以连续地遍历整个平面。

此外,佩亚诺曲线还在计算机图形学和数据结构等领域有着广泛的应用。例如,在计算机图形学中,佩亚诺曲线可以用于生成平滑的路径或动画;在数据结构中,佩亚诺曲线可以用于设计高效的空间索引结构。

至于三维空间的东西也有:

仿形学,也称为形态学,是研究自然界中生物形态、结构和功能的科学。它涉及到生物学、工程学、物理学、化学等多个学科领域,旨在揭示生物体的生长、发育、适应环境等方面的规律,以及这些规律与生物体形态、结构和功能之间的关系。

在仿形学中,研究者通常会关注生物体的形态特征、结构组成和功能表现等方面。例如,研究者可能会研究昆虫的外骨骼、鸟类的飞行机制、植物的根系结构等。这些研究不仅有助于我们了解生物体的演化历程和适应环境的能力,还可以为工程设计提供灵感和借鉴。

上一页 目录 +书签 下一章