折叠编辑本段应用
洛希极限是一个距离。当行星与恒星密度相等时,它等于恒星赤道半径的2.44倍。当天体和第二个天体的距离为洛希极限时,天体自身的重力和第二个天体造成的潮汐力相等。如果它们的距离少于洛希极限,天体就会倾向碎散,继而成为第二个天体的星环。它以首个计算这个极限的人爱德华·洛希命名。[1]
最常应用的地方就是卫星和它所环绕的星体。有些天然和人工的卫星,尽管它们在它们所环绕的星体的洛希极限内,却不至成碎片,因为它们除了引力外,还有其他的力帮助。在这些情况下,在卫星表面的物件有可能被潮汐力扯离卫星,要视乎物件在卫星表面哪部分——潮汐力在两个天体中心之间的直线最强。[2]
一些内部引力较弱的物体,例如彗星,可能在经过洛希极限内时化成碎片。苏梅克-列维9号彗星就是好例子。它在1992年经过木星时分成碎片,于1994年落在木星上。
现时所知的行星环都在洛希极限之内。
我以为是我先想到这玩意的,没想到早就有人抢先做出了判断。
至于现在意识层面上的东西,我就给出个难题来,为什么我的元神晶核化了?而在地球上却啥也不是,一坨浆糊,一团虚无?这跟所处空间存在的环境不同吗?仙武仙界域的空间中,这里的时空法则是地球上的亿万倍(黑洞中的物质密度ρν),所以要讨论的应该是:
刘维尔定理是实分析中的一个基本结果,它给出了可积函数的一个充分条件。该定理由法国数学家约瑟夫·刘维尔(Joseph Liouville)提出,并以他的名字命名。刘维尔定理在测度论和积分理论中占有重要地位,它为判断一个函数是否可积提供了有力工具。
刘维尔定理的内容如下:
设函数 (f: [a, b] \to \mathbb{R}) 满足以下条件:
(f) 在区间 ([a, b]) 上单调有界。
(f) 几乎处处连续,即除了可能在一个可数集上之外,(f) 在其他点上都是连续的。