付烁说:“知道了河流为什么会改变流向。接下来,我想问问,这里能有什么办法模拟水流吗?”
董趋说:“你是研究流体的吗?”
付烁说:“不是,我是研究计算机的。”
董趋说:“水流的模拟很困难。模拟出来的和实际的水流位置相差很大。很多因素没有考虑到,例如风速、土壤和石头的阻拦,表面张力。”
流体宏观模型认为流体是由无数流体元连续地组成的,即连续介质。所谓流体元指的是这样的小块流体:它的大小与放置在流体中的实物比较是微不足道的,但比分子的平均自由程却要大得多,它包含足够多的分子,能施行统计平均求出宏观参量,少数分子出入于流体元不会影响稳定的平均值。
另一方面,对于进行统计平均的时间也应选得足够大,使得在这段时间内,微观的性质,例如分子间的碰撞等已进行了许多次,在这段时间内进行统计平均能够得到稳定的数值。于是,从统计物理中得知,分子的物理量(质量、速度、动量和能量)经过统计平均后变成了流体元的质量,速度,压力和温度等宏观物理量,分子质量、动量和能量等输运过程,经过统计平均后表现为扩散,粘性,热传导等宏观性质。
描述流体运动一般有两种方法。
拉格朗日方法:在拉格朗日方法中,注意的中心即着眼点是流体质点,确定所有流体质点的运动规律,即它们的位置随时间变化的规律。十分明显,如果知道了所有流体质点的运动规律,那么整个流体运动的状况也就清楚了。
将描写运动的观点和方法用数学式子表达出来,为此首先必须用某种数学方法区别不同的流体质点。通常利用初始时刻流体质点的坐标作为区分不同流体质点的标志。设初始时刻 t = t0 时,流体质点的坐标是 a,b,c,它可以是曲线坐标,也可以是直角坐标。
欧拉方法:欧拉方法不直接考虑个别流体质点如何运动,而是用场的观点研究流体运动。它只集中注意力于那些发生在空间给定点的流动情况;对于流体质点从什么地方和如何在给定时刻达到这一点,经过这点以后又会运行到别的什么地方和怎样运行到那些地方的,这一切问题从欧拉方法观点看来并不是基本的。这样,欧拉方法是把空间某一固定点 (x, y, z) 的流体质点的速度当作时间的函数来研究的。
由于上式确定的速度函数是定义在空间点上的,它们是空间点坐标 x, y, z 的函数,所以研究的是场,如速度场等。因此采用欧拉观点描述运动时,就可以利用场论的知识。
计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。可以看做是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。